A Cross-Species Analysis of MicroRNAs in the Developing Avian Face
نویسندگان
چکیده
Higher vertebrates use similar genetic tools to derive very different facial features. This diversity is believed to occur through temporal, spatial and species-specific changes in gene expression within cranial neural crest (NC) cells. These contribute to the facial skeleton and contain species-specific information that drives morphological variation. A few signaling molecules and transcription factors are known to play important roles in these processes, but little is known regarding the role of micro-RNAs (miRNAs). We have identified and compared all miRNAs expressed in cranial NC cells from three avian species (chicken, duck, and quail) before and after species-specific facial distinctions occur. We identified 170 differentially expressed miRNAs. These include thirty-five novel chicken orthologs of previously described miRNAs, and six avian-specific miRNAs. Five of these avian-specific miRNAs are conserved over 120 million years of avian evolution, from ratites to galliforms, and their predicted target mRNAs include many components of Wnt signaling. Previous work indicates that mRNA gene expression in NC cells is relatively static during stages when the beak acquires species-specific morphologies. However, miRNA expression is remarkably dynamic within this timeframe, suggesting that the timing of specific developmental transitions is altered in birds with different beak shapes. We evaluated one miRNA:mRNA target pair and found that the cell cycle regulator p27(KIP1) is a likely target of miR-222 in frontonasal NC cells, and that the timing of this interaction correlates with the onset of phenotypic variation. Our comparative genomic approach is the first comprehensive analysis of miRNAs in the developing facial primordial, and in species-specific facial development.
منابع مشابه
Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis
Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegale...
متن کاملMolecular Surveillance of Avian Influenza in Bird Parks of Tehran, Iran
BACKGROUND: Avian influenza (AI) viruses have been isolated from a wide diversity of free-living avian species representing several orders. Since 1998, H9N2 AI outbreaks have been one of the major problems in Iranian poultry industry. In 2006, H5N1 was reported in swans in the north of Iran first , but until now there has been no official report from commercial flocks in Iran. OBJECTIVES: The...
متن کاملUsing ecological niche modeling to determine avian richness hotspots
Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness...
متن کاملMolecular detection and characterization of beak and feather disease virus in psittacine birds in Tehran, Iran
Beak and feather disease virus (BFDV), a member of genus circovirus, is a small, non-enveloped, single stranded DNA virus. Although BFDVs are among the most well studied circoviruses, there is little to no information about BFDVs in Iran. The aim of the present study was to detect and identify BFDV molecules from the birds referred to the avian clinic of The Faculty of Veterinary Medicine, Tehr...
متن کاملInsights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies
Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’ role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012